

Description

XL TLX3 BA is designed as a break apart probe. The orange labeled probe hybridizes proximal to the breakpoint in the TLX3 gene region at 5q35, the green labeled probe hybridizes distal to the breakpoint.

Clinical Details

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer type. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and quickly progressing type of ALL affecting T-lymphocytes. Genomic data suggests that more than 10 functional aberrations are contributing to the development of this disease. T-ALL cases can be grouped by distinct genetic profiles and the aberrant expression of a characteristic transcription factor. Major subgroups are characterized by ectopic expression of TAL1, TLX1, TLX3, HOXA9/10, LMO2 or NKX2-1 and others as a result of chromosomal rearrangements or mutations. About 20 % of childhood T-ALL cases are characterized by aberrant expression of TLX3 as a result of t(5;14)(q35;q32). This cryptic translocation juxtaposes TLX3, normally not expressed in T-cells, with the BCL11B gene which is active in T-cells and results in ectopic expression of TLX3. Fluorescence in situ hybridization is a valuable method for the detection of t(5;14)(q35;q32) since cryptic translocations may escape during classical cytogenetic analysis. Furthermore, the broad range of breakpoints in the chromosomal region 14q32 makes the development of efficient PCR-based methods difficult.

Literature:

- Van Zutven et al (2004) Haematologica 89:671-678
- **I** Su et al (2006) Blood 108:4198-4201
- Girardi et al (2017) Blood 129:1113-1123

Order No.:

D-5129-100-OG

XL TLX3 BA hybridized to normal lymphocytes. One normal interphase is shown. The expected normal signal pattern of XL TLX3 BA is two orange-green colocalization/fusion signals representing the two normal TLX3 loci. Translocations as t(5;14)(q35;q32) are seperating one orange-green colocalization/fusion resulting in one green, one orange and one orange-green colocalization/fusion signal.

Clinical Applications:

Further Information or Request Assistance

Please do not hesitate to contact us if you have any questions or if you need technical support.

www.metasystems-probes.com/CONTACT

MetaSystems Probes GmbH (Headquarters)

1. Industriestrasse 7 68804 Altlussheim, Germany tel +49 6205 2927 60|fax +49 6205 2927 29 info@metasystems-probes.com

MetaSystems Group, Inc.

70 Bridge Street Newton, MA 02458, USA tel +1 6179 2499 50|fax +1 6179 2499 54 info@metasystems.org

MetaSystems S.r.l.

Via Gallarate 80 20151 Milano, Italy tel +39 0236 7587 51 | fax +39 0245 3753 03 info@metasystems-italy.com

MetaSystems India Pvt., Ltd.

No. 1/1, 1st Floor, 1st Main Rd., 2nd cross Thimmaiah Garden, R T Nagar Bangalore Karnataka, 560 032, India tel +91 9535 7788 01 info@metasystems-india.com

MetaSystems Asia Co., Ltd.

Unit 108, 1/F, Bio-Informatics Centre No. 2 Science Park West Avenue Hong Kong Science Park Shatin, New Territories, Hong Kong tel +852 2587 8333 | fax +852 2587 8334 info@metasystems-asia.com

Document No. PFS-D5129-2018-02-01-S © 2018 by MetaSystems Probes

FACTSHEET

info@metasystems-probes.com www.metasystems-probes.com